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The stability of nonequilibrium molecular dynamics simulations
of elongational flows
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We show that nonequilibrium molecular dynamics simulations of elongational flows are inherently
unstable over long periods of time. This instability leads to a catastrophic nonequilibrium phase
transition that destroy the true structure of the fluid. We identify the source of this instability as a
lack of momentum conservation, resulting from numerical round-off errors. We show that this error
grows exponentially in the direction of compression, and present two numerical recipes that involve
only minor perturbations to the particle trajectories to guarantee momentum conservation. ©2000
American Institute of Physics.@S0021-9606~99!51748-0#
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INTRODUCTION
The study of steady, time-independent elongational fl

of atomic fluids by nonequilibrium molecular dynamic
~NEMD! techniques has until recently been restricted to v
short total simulation times. The reason for this is in t
nature of the flow geometry, where to guarantee volume c
servation the fluid must contract in at least one dimension
it simultaneously expands in at least one other. Thus,
simulation comes to a halt when the length of the simulat
cell in the contracting dimension reaches its minimum ext
sion of twice the potential interaction cutoff radius.

Only recently has this limitation been overcome by a
plication of the spatially and temporally periodic bounda
conditions devised by Kraynik and Reinelt.1 While appli-
cable only to planar elongational flow~i.e., contraction in
one direction, expansion in another, while the third rema
unchanged!, the method has nonetheless allowed the fi
long-time simulations of steady, time-independent elon
tional flow by NEMD simulations.2–4 These first papers wer
mainly concerned with demonstrating that the method
Kraynik and Reinelt1 could successfully be applied t
NEMD simulations, and on developing algorithms that a
highly efficient and analogous to standard NEMD simu
tions of planar Couette flow.4 As such, they did not attemp
to simulate planar elongational flow for more than a fe
thousand time steps, as this was sufficient to demonstrate
soundness of the algorithms.

In this paper we simulate planar elongational flow ov
hundreds of thousands of time steps. We will show that
relatively weak elongation strain rates the simulation is
stable and induces a catastrophic nonequilibrium phase
sition in the fluid. We further show that such a phase tran
tion is a consequence of the nonconservation of a t
peculiar momentum resulting from an exponential growth

a!Electronic mail: btodd@swin.edu.au
b!Electronic mail: peter.daivis@rmit.edu.au
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numerical round-off error. This exponential growth of roun
off error has not previously been discussed, but is in f
common toall NEMD simulations, where compression in
least one dimension occurs. It would never have been
served before because of the long simulation times requ
for the effects to manifest themselves clearly. We dem
strate that this kind of numerical error does not occur
standard NEMD simulations of planar Couette flow, but
unavoidable when simulating elongation and is independ
of the type of numerical integrator chosen. Finally, we p
pose two simple numerical recipes involving only minor pe
turbations to the particle trajectories that overcome this pr
lem and guarantee the conservation of total pecu
momentum for arbitrarily long total simulation times.

SIMULATIONS AND RESULTS

As stated in the Introduction, our purpose in this pape
to demonstrate that all previously existing NEMD algorithm
of planar elongational flow are inherently unstable. The
stability induces a catastrophic phase transition in the flu
which is nothing more than an artifact of the simulation
gorithm. In this paper we use the ‘‘deforming-brick’’ algo
rithm we previously devised to simulate planar elongatio
flow ~PEF!.4 To ensure that the effects we observed we
independent of the type of algorithm used, we also p
formed some test simulations using the ‘‘Lagrangia
rhomboid’’ algorithm,4 our original simulation algorithm~in
which the simulation cell is always skewed with respect
the flow axes!,2 and the now redundant method of simulatin
the flow with the axes of the simulation cell aligned with th
flow fields.5–8 We observed exactly the same numerical
rors in all these algorithms. The test of the latter algorith
was to ensure that the problem was not a consequence o
Kraynik–Reinelt method, which is extremely important
this method is to be a viable ‘‘standard’’ procedure for pe
forming NEMD simulations of PEF. Furthermore, we test
the algorithms using both fifth-order Gear predicto
© 2000 American Institute of Physics
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corrector and fourth-order Runge–Kutta numerical integ
tors, and found that the numerical instability was indep
dent of which type of integrator we used. We also perform
simulations on two- and three-dimensional fluids, once ag
finding that the same problem arose, independent of the
mensionality of the fluid. To ensure that numerical erro
were not induced by too large a time step, we perform
simulations in which the time step ranged between 1025– 4
31023 reduced time units and found the numerical instab
ity to be independent of the time step used. For the purpo
of demonstration, we will only report the results for a tw
dimensional WCA fluid9 undergoing PEF, in which the equa
tions of motion are integrated by a fifth-order Ge
predictor–corrector scheme. The time step used for the si
lations reported in this paper was 0.004 reduced time un
In all simulations, the total number of WCA atoms was 20
while the reduced temperature and number density w
0.722 and 0.8442, respectively. Once again, the effect
changing the temperature, density, size of the simulation c
and total number of atoms were tested, but none of th
tests had any effect on the numerical stability of the flo
Finally, we note that the details of the deforming-brick alg
rithm, as well as the appropriate SLLOD equations of m
tion, may be found in Ref. 4, and will not be detailed in th
paper.

In Fig. 1 we display the total internal energy per partic
for a two-dimensional fluid under PEF, with an elongati
rate of ė50.05. Our geometry is such that the strain ra
tensor is given as

“u5S ė 0

0 2 ė D .

At times less thant1'1.53103 reduced time units~corre-
sponding to 375 000 time steps! E/N appears to be constan
as expected. However, betweent1 and t2'2.53103 E/N

FIG. 1. Total internal energy per particle as a function of time, for a tw
dimensional system of 200 WCA particles under planar elongational fl
The system is thermostatted to a temperature ofT50.722, and the elonga
tion rate is ė50.05. The number density isN/V50.8442. At t5t1 the
system undergoes a catastrophic nonequilibrium phase transition. Th
ergy decreases rapidly betweent1,t,t2 , until it reaches a final steady stat
at t.t2 , where it is minimized.
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decreases rapidly. At times greater thant2 the energy stabi-
lizes again, but at a significantly lower value than its init
‘‘steady-state’’ value ofE/N'1.215.

This catastrophic transition in the fluid energy is a res
of a flow-induced change in the structure of the fluid. Su
nonequilibrium phase transitions have been observed pr
ously in simulations10,11 and have been shown to be artifac
of an inappropriate use of profile-biased thermostats.11,12 To
demonstrate that the fluid has indeed changed its struc
we plot only theradial part of the nonequilibrium compo
nent of the total pair distribution function,n(r ), for ~a! t
,t1 , and ~b! t.t2 in Fig. 2. In calculatingn(r ) we first
expand thetotal pair distribution function as a Taylor serie
and consider only terms that are first order in the gradien
the streaming velocity,13 i.e.,

G~r ,“u!5g~r !1n~r !S rr

r 2D :“u~r !

1S n0~r !2
1

3
n~r ! D“–u~r !, ~1!

whereg(r ) is the equilibrium pair distribution function. Fo
constant volume deformation“–u(r )50, and so Eq.~1! sim-
plifies to

G~r ,“u!5g~r !1n~r !S rr

r 2D :“u~r !. ~2!

Following the procedure outlined by Pryde14–16 in calculat-
ing n(r ) for shear flow, one can show thatn(r ) for a two-
dimensional fluid elongating in thex direction and compress
ing in they direction is given as

n~r !5

1

ė F K xi j
2

r i j
2 L 2K yi j

2

r i j
2 L G

2prr dr
, ~3!

where r is the fluid density,xi j 5xi2xj , yi j 5yi2yj , r i j

5r i2r j , and the averaging is performed in a small region
the fluid betweenr and r 1dr.

It is clear from Fig. 2 that the fluid structure is signifi
cantly altered after the phase transition occurs.

-
.

en-

FIG. 2. Radial part of the nonequilibrium component of the total pair d
tribution function,n(r ), for times t,t1 and t.t2 . Clearly the fluid struc-
ture is altered significantly betweent1,t,t2 .
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Of further interest is to look at the actual values of t
streaming velocity components in both thex andy directions
before and after the transition. If the phase transition i
consequence of an incorrect assumption about the valu
the streaming velocity of the fluid, then we may well expe
string phases to occur. We calculate the streaming velocit
a function of position by the expression

u~r ,t !5
ru~r ,t !

r~r ,t !
5

( imvi~ t !d„r2r i~ t !…

( imd„r2r i~ t !…
, ~4!

where ru(r ,t) is the momentum current density,r(r ,t) is
the mass density, andvi(t) is the laboratory velocity of atom
i. In practice, we integrate~or average! ru over a small re-
gion, r . In this example, we divide the fluid into bins o
constant thicknessDx and Dy in the x and y dimensions,
respectively. These bins are dynamic, in that the numbe
bins in the contractingy direction decreases as a function
time ~as the cell length in this direction decreases!, while the
number of bins in the expandingx direction increases. Thus
the statistics for bins will be best nearer the center of
simulation cell, and poorest toward the edges. However
averaging over many independent simulations we sign
cantly improve the overall statistics.

In Fig. 3 we display thex and y components of the

FIG. 3. ~a! x component of the streaming velocity for timest,t1 and t
.t2 . ~b! y component of the streaming velocity for timest,t1 and t.t2 .
At t.t2 uy(y) is shifted by'10.51, destroying the symmetry of the flow i
the contracting direction and contradicting the assumptions of the SLL
equations of motion. Note, however, that]uy(y)/]y52 ė, as required by
~and input into! the equations of motion.
a
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streaming velocity for timest,t1 and t.t2 , as before. The
streaming velocity in the expandingx direction,ux(x) is both
linear and identical for both time regions. The elongati
rate, given asėxx5]ux(x)/]x5 ė is 0.05, as expected. O
significant interest, however, isuy(y). Clearly nowuy(y) is
not the same for both time regions, even though, as requi
the slope is correctly determined asėyy5]uy(y)/]y52 ė
520.05. What this means is that the actual streaming
locity of the fluid in the contracting dimension for timest
.t1 is not what these equations assume it should be! In fa
the actual streaming velocity at timest.t2 is shifted by
'10.51. This contradicts the requirements that the stre
ing velocity should be stable at all times. In the time interv
t1,t,t2 an extra amount of linear momentum is introduc
in the contracting direction, destroying the symmetry of t
flow. During this time the thermostat interprets this exce
linear momentum as heat and tries to cool the system. T
then stabilizes the system for timest.t2 .

The above results suggest that we examine the total
ear momentum of the fluid. In Fig. 4~a! we plot the total
linear momentum in they direction as a function of time and
observe just such an increase betweent1,t,t2 . More re-
vealing, however, is the fact that the total linear moment
is continually increasing fromt50 up to t't2 . This is
clearly seen in Fig. 4~b!, where the scale is magnified. A
times t.t2 the fluid appears to have settled into a final no
equilibrium steady state, and the linear momentum remain
constant of the motion. In Fig. 4~c! we plot the total linear
momentum of the fluid in thex direction, and observe tha
after an initial transient response, it settles to its expec
value of zero.

To check the role of the thermostat in the nonconser
tion of linear momentum, we performed a simulation at
very weak elongation rate (ė58.0231025) without a ther-
mostat acting on the fluid. For an unthermostatted fluid
temperature increases as time progresses. If the field is
large the fluid will heat up too rapidly and the simulation w
become unstable. However, for such a weak elongation
the fluid did not heat up significantly within the total simu
lation time of 60 000 time steps. In Fig. 5 we display thex
andy components of the total linear momentum as a funct
of time, and once again observe that it increases in the di
tion of contraction, but remains at zero in the direction
expansion. This is the same behavior as in the thermosta
fluid, which suggests that the divergence in the linear m
mentum in the contraction direction is independent of
thermostatting mechanism, at least in the weak field regi
We further note that this divergence is well characterized
exponential, the value of the fitted elongation rate (ėfitted

58.1331025) being within numerical error of the actua
value of ė58.0231025.

DISCUSSION

The central question to ask is the following: why do
the total linear momentum in the direction of contraction~y!
diverge exponentially, whereas the total linear momentum
the expanding direction~x! behaves as it should and fluctu
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43J. Chem. Phys., Vol. 112, No. 1, 1 January 2000 Stability of nonequilibrium molecular dynamics
ates around zero? Furthermore, why do we observe no
violation of momentum conservation in standard NEM
simulations of planar Couette flow?

We consider first the case of planar elongation. For
adiabatic system~such as that displayed in the results for F
5 above! the SLLOD equations of motion12 are

ṙ i5
pi

m
1r i–“u

~5!ṗi5Fi2pi–“u.

FIG. 4. ~a! Total y component of the linear momentum as a function of tim
The total peculiar momentum diverges exponentially untilt't2 . After this
time it becomes a constant of the motion and the fluid structure is stabili
~b! The same as in~a!, but now only early times are displayed. On th
magnified scale it is clear that the total peculiar momentum diverges e
nentially from t50. ~c! Total x component of the linear momentum as
function of time.
ch

n
.

We can write the second equation in terms ofx andy com-
ponents as

ṗa i5Fa i2 ėaapa i , ~6!

wherea5x or y.
Summing over all particles, and observing Newton

third law gives

(
i

ṗa i52 ėaa(
i

pa i ~7!

or

(
i

dpa i52 ėaa(
i

pa i dt. ~8!

Defining Pa5( i pa i , then ( i dpa i5d(( i pa i)[dPa , and
Eq. ~8! may be written as

dPa

Pa
52 ėaa dt, ~9!

which has the simple analytic solution

Pa~ t !5Pa~0!exp~2 ėaat !,

.

d.

o-

FIG. 5. ~a! The totaly component of the linear momentum as a function
time for an unthermostatted system withė58.0231025. The plot shows an
exponential divergence of they component of the total linear momentum
Crosses are actual numerical data, while the solid line shows the fit to
data from which a value ofė may be estimated. The agreement between
actual and estimated values ofė are within 2% of each other.~b! The total
x component of the linear momentum as a function of time for the system
~a!, which is seen to be time averaged to zero, as expected.
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i.e.,

(
i

pa i~ t !5(
i

pa i~0!exp~2 ėaat !. ~10!

Noting now that

ėxx51 ė,

ėyy52 ė, where ė.0,

we obtain the final analytic expressions for the total line
momenta in both the compression and expansion directi
respectively,

(
i

pyi~ t !5(
i

pyi~0!exp~ ėt !,

~11!

(
i

pxi~ t !5(
i

pxi~0!exp~2 ėt !.

The implications of Eq.~11! are quite surprising in them
selves, in that they state that for a NEMD simulation of PE
the total linear momentum for a fluid in the contracting~y!
direction will alwaystend to diverge exponentially, wherea
the total linear momentum of a fluid in the expanding~x!
direction will always tend to converge exponentially towa
zero. If numerical precision was infinite, then att50,
( i pyi(0)50 ~identically!, and hence( i pyi(t)50, ;t, and
the simulation would conserve momentum and remain sta
for all times. As this can never be the case, no matter w
the specifics are of the particular numerical integrator c
sen, exponential divergence of( i pyi(t) is inevitable. Con-
servation of momentum is assured in the expanding di
tion, but canneverbe obtained in the contracting directio
under the application of the standard numerical methods

This result is confirmed by the numerical data in Fig.
This type of numerical instability isnot what is usually as-
sociated with kinetic energy conserving integrators,17 and
should be thought of as unique to flows involving contract
of at least one dimension in space. The total linear mom
tum in this contracting dimension will always be driven
diverge exponentially.

Consider now the case of an adiabatic fluid undergo
planar Couette flow. In this case the appropriate SLLO
equations of motion for the components of peculiar mom
tum are

ṗxi5Fxi2ġpyi ,

ṗyi5Fyi , ~12!

whereġ is the shear strain rate given asġ5]ux /]y.
Using Newton’s third law for the sum of the forces, w

have

(
i

ṗxi52ġ(
i

pyi ~13a!

and
r
s,

,

le
at
-

c-

.

n-

g

-

(
i

ṗy i50. ~13b!

Equation~13b! is simply a statement of the conservation
linear momentum in they direction. Thus, Eq.~13a! becomes

(
i

ṗxi50, ~14!

which itself implies that momentum is conserved in thex
direction as well. Thus, any numerical simulation will in
volve the total linear momentum in both thex and y direc-
tions randomly fluctuating about zero. For planar Coue
flow the geometry fortuitously demands that the linear m
mentum is not driven to diverge as it is for planar elongatio
or any flow geometry that involves contraction. This is w
all simulations of planar Couette flow are numerically stab
even for long simulation times, not considering the us
technical problems associated with numerical drift, whi
are easily corrected.18,19

Having established the numerical round-off roots of t
problem, we now propose two simple and easily imp
mented solutions, both of which involve only minimal pe
turbations to the particle trajectories.

The first solution is the most obvious and easily imp
mented. At each time step simply subtract out the totay
momentum from each particle. Ifp̄y[(1/N)( i pyi , thenpyi

→pyi2 p̄y , which guarantees that the sum of the linear m
mentum in they direction is always zero at each timestep

This rezeroing of the total linear momentum involv
only very small perturbations to the particle trajectorie
Nonetheless, it is anad hocmethod and could be criticized
because the equations of motion are now no longer fu
deterministic and time reversible. However, these two obj
tions can be readily overcome by designing time revers
equations of motion employing a fully deterministic mech
nism to constrain the total linear momentum to zero. W
demonstrate this by applying Gauss’ Principle of Le
Constraint12 to the momentum equation. It is straightforwa
to show that the newthermostattedequations of motion are
given as

ṙ i5
pi

m
1r i–“u,

ṗi5Fi2pi–“u2api2l j , ~15!

wherej is the unit vector in they direction, andl is a mul-
tiplier determined as

l5~1/N!(
i

@Fi2pi–“u2api #–j . ~16!

Note that the perturbation applies only to they component of
the momentum. Thex component is guaranteed by the d
namics to be conserved, as discussed previously.

As the equations of motion are now thermostatted,
need to evaluate the thermostat multiplier,a. Our preference
is to use a Gaussian thermostat,12 with the appropriate value
given as
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a5
( i@pi–Fi2pi–~pi–“u!2lpi–j #

( ipi
2 . ~17!

In Fig. 6~a! we display the total linear momentum in th
y direction as a function of time for a thermostatted syste
using both procedures described above. Both methods
shown to conserve the momentum~i.e., ( i pyi50, within sta-
tistical errors!. Thead hocmethod does display superior st
tistics, and because of its simplicity is to be preferred.
equally viable alternative would be to use direct proportio
feedback.18 Finally, in Fig. 6~b! the total internal energy pe
particle is plotted as a function of time for both method
There is no measurable statistical difference in the ener
~or indeed the pressures! of both systems. Clearly the phas
transition has been removed and the fluid structure rem
stable throughout the simulation, as confirmed by the equ
lence ofn(r ) for both systems~not shown!.

CONCLUSION

We have demonstrated that NEMD simulations of pla
elongational flow, or indeed any flow in which compressi

FIG. 6. ~a! The totaly-component of the linear momentum as a function
time for a thermostatted system (T50.722;N/V50.8442;ė50.05) with~i!
( i pyi(t) set to zero at each time step byad hoc rezeroing, and~ii ! with
( i pyi(t) set to zero by the application of a dynamical Gaussian constrain
the equations of motion.~b! The total internal energy per particle as
function of time for the systems described in~a!. The energy for both sys-
tems attains a single nonequilibrium steady state, as required, and the
no longer experiences a nonequilibrium phase transition.
,
re

l

.
es

ns
a-

r

occurs, are numerically unstable. We have shown that
instability is induced by numerical round-off errors th
cause the total linear momentum in the contracting direct
to accumulate exponentially in time. This exponential
crease reaches a critical value in time, after which the fl
undergoes a catastrophic restructuring that drastically
duces the total internal energy. This lack of momentum c
servation is independent of the type of numerical integra
chosen to integrate the equations of motion, and is an
avoidable consequence of the finite precision in the float
point representation of variables inherent in any compute

We devised two numerical schemes which ensure
momentum is conserved. The first involvesad hocrezeroing
of the total momentum in the contracting direction, while t
second utilizes a nonholonomic Gaussian constraint. Thead
hoc method is simpler to use and also displays superior
tistics.

We have also shown that NEMD simulations of plan
Couette flow do not suffer from this exponential divergen
of the total linear momentum. The geometry of the flow fo
tuitously allows the total momentum to fluctuate arou
zero.

Finally, we point out that the numerical instability de
scribed in this paper was confined to flows in which t
elongation rate was relatively weak~;,0.05!. For higher
values of the field we found that the simulations remain
stable for long times. Our analysis of the conservation
momentum was based on an unthermostatted fluid, as it
possible to find analytical solutions to the conservation eq
tions, and to compare these solutions with actual numer
results. Naturally, such a fluid had to be under the influe
of a very weak field to avoid excessive heating of the flu
~and hence further numerical instability of the system!. It
was thus not possible to perform unthermostatted simulat
for elongation rates above 0.05 for comparison purposes.
thermostatted flows under the influence of weak fields,
thermostat multipliera is a relatively small term in the mo
mentum equation. Thus, the exponential behavior of the t
linear momentum tends to be preserved. However, for lar
field strengths the term involvinga becomes more dominan
and the corresponding conservation equation is highly n
linear. This equation cannot be solved analytically, and
numerical results indicate that the exponential dependenc
the total linear momentum is destroyed in this higher fie
region.
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