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The stability of nonequilibrium molecular dynamics simulations
of elongational flows
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We show that nonequilibrium molecular dynamics simulations of elongational flows are inherently
unstable over long periods of time. This instability leads to a catastrophic nonequilibrium phase
transition that destroy the true structure of the fluid. We identify the source of this instability as a
lack of momentum conservation, resulting from numerical round-off errors. We show that this error
grows exponentially in the direction of compression, and present two numerical recipes that involve
only minor perturbations to the particle trajectories to guarantee momentum conservati@d00o
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INTRODUCTION numerical round-off error. This exponential growth of round-
The study of steady, time-independent elongational flowoff error has not previously been discussed, but is in fact
of atomic fluids by nonequilibrium molecular dynamics common toall NEMD simulations, where compression in at
(NEMD) techniques has until recently been restricted to venjeast one dimension occurs. It would never have been ob-
short total simulation times. The reason for this is in theserved before because of the long simulation times required
nature of the flow geometry, where to guarantee volume corfor the effects to manifest themselves clearly. We demon-
servation the fluid must contract in at least one dimension astrate that this kind of numerical error does not occur in
it simultaneously expands in at least one other. Thus, thétandard NEMD simulations of planar Couette flow, but is
simulation comes to a halt when the length of the simulatiorunavoidable when simulating elongation and is independent
cell in the contracting dimension reaches its minimum extenof the type of numerical integrator chosen. Finally, we pro-
sion of twice the potential interaction cutoff radius. pose two simple numerical recipes involving only minor per-
Only recently has this limitation been overcome by ap-turbations to the particle trajectories that overcome this prob-
plication of the spatially and temporally periodic boundarylem and guarantee the conservation of total peculiar
conditions devised by Kraynik and Rein&lWhile appli- ~momentum for arbitrarily long total simulation times.
cable only to planar elongational flogi.e., contraction in
one direction, expansion in another, while the third remainsSIMULATIONS AND RESULTS
unchangep] the method has nonetheless allowed the first

'P”Q't'me S|mulat|ons. of stgady,_4ume-mdgpendent elongag, jemonstrate that all previously existing NEMD algorithms
tlon_al flow by NEMD _S|mulat|on§. T_hese first papers were of planar elongational flow are inherently unstable. The in-
mainly concerned with demonstrating that the method of,pjjity induces a catastrophic phase transition in the fluid,
Kraynik and I_?emei‘t could successfully be applied t0 \yhich is nothing more than an artifact of the simulation al-
NEMD smylaﬂons, and on developing algorithms th.at ar€yorithm. In this paper we use the “deforming-brick” algo-
highly efficient and analogous to standard NEMD simula-jjshm e previously devised to simulate planar elongational
tions of planar Couette flokAs such, they did not attempt 5,y (PER.* To ensure that the effects we observed were
to simulate planar elongational flow for more than a feWindependent of the type of algorithm used, we also per-
thousand time steps, as this was sufficient to demonstrate th§ymed some test simulations using the “Lagrangian-
soundness of the algorithms. rhomboid” algorithm? our original simulation algorithngin

In this paper we simulate planar elongational flow overyhich the simulation cell is always skewed with respect to
hundreds of thousands of time steps. We will show that fokhe flow axe? and the now redundant method of simulating
relatively weak elongation strain rates the simulation is un+the flow with the axes of the simulation cell aligned with the
stable and induces a catastrophic nonequilibrium phase trafiow fields>® We observed exactly the same numerical er-
sition in the fluid. We further show that such a phase transirors in all these algorithms. The test of the latter algorithm
tion is a consequence of the nonconservation of a totalas to ensure that the problem was not a consequence of the
peculiar momentum resulting from an exponential growth ofkraynik—Reinelt method, which is extremely important if
this method is to be a viable “standard” procedure for per-
AE|ectronic mail: btodd@swin.edu.au forming NEMD simulations of PEF. Furthermore, we tested
PElectronic mail: peter.daivis@rmit.edu.au the algorithms using both fifth-order Gear predictor—

As stated in the Introduction, our purpose in this paper is
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FIG. 1. Total internal energy per particle as a function of time, for a two- FIG. 2. Radial part of the nonequilibrium component of the total pair dis-
dimensional system of 200 WCA particles under planar elongational flow ribution function, »(r), for timest<t; andt>t,. Clearly the fluid struc-
The system is thermostatted to a temperatur&e.722, and the elonga- ture is altered significantly betweep<t<t,.

tion rate ise=0.05. The number density i8l/V=0.8442. Att=t, the

system undergoes a catastrophic nonequilibrium phase transition. The en-

ergy decreases rapidly betwegrit<t,, until it reaches a final steady state . ) .
att>t,, where it is minimized. decreases rapidly. At times greater tharthe energy stabi-

lizes again, but at a significantly lower value than its initial
“steady-state” value oE/N~1.215.
o This catastrophic transition in the fluid energy is a result
corrector and fourth-order Runge—Kutta numerical integrays 5 flow-induced change in the structure of the fluid. Such

tors, and found that the numerical instability was indepeny,qnequilibrium phase transitions have been observed previ-
dent of which type of integrator we used. We also performeq)usly in simulation®1 and have been shown to be artifacts
simulations on two- and three-dimensional fluids, once agaips 4 inappropriate use of profile-biased thermostat8To
finding that the same problem arose, independent of the djemonstrate that the fluid has indeed changed its structure,
mensmnal_lty of the fluid. To ensure that numerical errors,,,o plot only theradial part of the nonequilibrium compo-
were not induced by too large a time step, we performedien; of the total pair distribution functiony(r), for (a) t
SImulaStlons in which the time step ranged betw_een?]:m _ <ty, and (b) t>t, in Fig. 2. In calculatingy(r) we first

% 10" reduced time units and found the numerical instabil-gynanq theotal pair distribution function as a Taylor series,

ity to be independent of the time step used. For the purposes,q consider only terms that are first order in the gradient of
of demonstration, we will only report the results for a two- {4 streaming velocit}? i.e.

dimensional WCA fluid undergoing PEF, in which the equa-
tions of motion are integrated by a fifth-order Gear
predictor—corrector scheme. The time step used for the simu-
lations reported in this paper was 0.004 reduced time units.
In all simulations, the total number of WCA atoms was 200, +
while the reduced temperature and number density were

0.722 and 0.8442, respectively. Once again, the effects Qfhereg(r) is the equilibrium pair distribution function. For

changing the temperature, density, size of the simulation celbonstant volume deformatio-u(r)=0, and so Eq(1) sim-
and total number of atoms were tested, but none of thesgjifies to

tests had any effect on the numerical stability of the flow.
Finally, we note that the details of the deforming-brick algo- G(r.Vu)= 4 ([) RV 2
rithm, as well as the appropriate SLLOD equations of mo- (r,Vu)=g(r)+u(r) r2) u()- @
tion, may be found in Ref. 4, and will not be detailed in this Following the procedure outlined by Prydet®

paper. ing v(r) for shear flow, one can show thafr) for a two-

In Fig. 1 we d_lsplay th_e total intemal energy per part'.CIedimensional fluid elongating in thedirection and compress-
for a two-dimensional fluid under PEF, with an elongatlonmg in they direction is given as

rate of e=0.05. Our geometry is such that the strain rate

G(r,Vu)y=g(r)+ v(r)(%) :Vu(r)

V-u(r), ()

1
vo(r) = 3 ¥(1)

in calculat-

tensor is given as 1 /x5 B Yi
€ I I 3
Vu_(e 0 ) = —"Zmrdr &
0 —e¢/ where p is the fluid density X;; =Xi—X;, Yij=VYi—VYj, Iij

=r;—r;, and the averaging is performed in a small region of
At times less thart;~1.5x 10° reduced time unitgcorre-  the fluid betweerr andr +dr.
sponding to 375000 time step&/N appears to be constant, It is clear from Fig. 2 that the fluid structure is signifi-
as expected. However, between and t,~2.5x10°> E/N cantly altered after the phase transition occurs.
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1o M T streaming velocity for times<t, andt>t,, as before. The
o :g; Lt o streaming velocity in the expandinxgdirection,u,(x) is both
- e PR linear and identical for both time regions. The elongation
050 e ] rate, given ase,,= du,(X)/dx=e is 0.05, as expected. Of
7/,/'/ ] significant interest, however, ig/(y). Clearly nowu(y) is
2 g0 L B 7 ] notthe same for both time regions, even though, as required,
= I P ] the slope is correctly determined ag,=duy(y)/dy=—¢€
i e e =MW _s00s ] = —0.05. What this means is that the actual streaming ve-
050 F e To* i locity of the fluid in the contracting dimension for times
i //‘/ ] >t, is notwhat these equations assume it should be! In fact,
L ] the actual streaming velocity at timés-t, is shifted by
A0 He ' ' ! ‘ ~+0.51. This contradicts the requirements that the stream-
@ 16 12 -80 40 0)-(0 40 80 12 16 ing velocity should be stable at all times. In the time interval
t,<t<t, an extra amount of linear momentum is introduced
16 L ] in the contracting direction, destroying the symmetry of the
- AR flow. During this time the thermostat interprets this excess
o I b linear momentum as heat and tries to cool the system. This
, ] then stabilizes the system for timest,.
00 - e The above results suggest that we examine the total lin-
5 oo T _ ] ear momentum of the fluid. In Fig.(d we plot the total
=" : T - ] linear momentum in thg direction as a function of time and
050 [ éﬁ:au(;)(ly):—é=—0,05 T 4 observe just such an increase betwe¢gndt<t,. More re-
] ] vealing, however, is the fact that the total linear momentum
10 [ y is continually increasing front=0 up to t=~t,. This is
r ] clearly seen in Fig. &), where the scale is magnified. At
a5 L ——t— — ] timest>t, the fluid appears to have settled into a final non-
) -10 5.0 0.0 5.0 10 equilibrium steady state, and the linear momentum remains a
y

constant of the motion. In Fig.(d) we plot the total linear
FIG. 3. (a) x component of the streaming velocity for timest; andt momentum of the fluid in the direction, and observe that,
>t,. (b) y component of the streaming velocity for timest; andt>t,. after an initial transient response, it settles to its expected
At t>t, uy(y) is shifted by~+0.51, destroying the symmetry of the flow in \/g|ye of zero.

the contracting direction and contradicting the assumptions of the SLLOD . )

equations of motion. Note, however, thai,(y)/dy=—¢, as required by . To C,heCk the role of the thermostat in the, noncpnserva

(and input into the equations of motion. tion of linear momentum, we performed a simulation at a
very weak elongation ratee=8.02< 10" °) without a ther-

mostat acting on the fluid. For an unthermostatted fluid the
Of further interest is to look at the actual values of thel€mperature increases as time progresses. If the field is too
streaming velocity components in both thandy directions large the fluid will heat up too rapidly and the simulation will
before and after the transition. If the phase transition is &€come unstable. However, for such a weak elongation rate
consequence of an incorrect assumption about the value p€ fluid did not heat up significantly within the total simu-
the streaming velocity of the fluid, then we may well expect/@tion time of 60000 time steps. In Fig. 5 we display the
string phases to occur. We calculate the streaming velocity 2&"dy components of the total linear momentum as a function

a function of position by the expression of time, and once again observe that it increases in the direc-
tion of contraction, but remains at zero in the direction of

u(r t)= pu(r,t) _ Zimv; (1) 8(r —ri(t)) 4) expansion. This is the same behavior as in the thermostatted
’ p(r,t) Simo(r—ri(t)) fluid, which suggests that the divergence in the linear mo-

mentum in the contraction direction is independent of the
thermostatting mechanism, at least in the weak field regime.
We further note that this divergence is well characterized as
exponential, the value of the fitted elongation ratg{y

where pu(r,t) is the momentum current density(r,t) is

the mass density, ang(t) is the laboratory velocity of atom

i. In practice, we integratéor average pu over a small re-

gion, r. In this example, we divide the fluid into bins of —8.13x10°%) being within numerical error of the actual

constant thicknesd, and A, in the x andy dimensions, = S 9,5

respectively. These bins are dynamic, in that the number 0\{alue ofe=8.02<10"".

bins in the contracting direction decreases as a function of

time (as the cell length in this direction decregseghile the

number of bins in the expandingdirection increases. Thus, piscussiON

the statistics for bins will be best nearer the center of the

simulation cell, and poorest toward the edges. However, by The central question to ask is the following: why does

averaging over many independent simulations we signifithe total linear momentum in the direction of contractign

cantly improve the overall statistics. diverge exponentially, whereas the total linear momentum in
In Fig. 3 we display thex and y components of the the expanding directiofx) behaves as it should and fluctu-
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5107 T L T ] FIG. 5. (a) The totaly component of the linear momentum as a function of
time for an unthermostatted system witk 8.02< 10~ °. The plot shows an
410" b exponential divergence of thecomponent of the total linear momentum.
[ Crosses are actual numerical data, while the solid line shows the fit to that
310712 ] data from which a value of may be estimated. The agreement between the
_ actual and estimated values ofare within 2% of each othetb) The total
i; 2 1012 b x component of the linear momentum as a function of time for the system in
W ] (a), which is seen to be time averaged to zero, as expected.
1101 .
0 ] . L
] We can write the second equation in termsxandy com-
otz L 11 | L] ponentS as
0 20 40 60 80 100 120 140 160 ho— _
(c) time Poi= Fai €aaPai (6)

FIG. 4. (a) Totaly component of the linear momentum as a function of time. wherea—x ory. . . ,
The total peculiar momentum diverges exponentially urtit,. After this Summing over all particles, and observing Newton's
time it becomes a constant of the motion and the fluid structure is stabilizedthird law gives

(b) The same as irfa), but now only early times are displayed. On this

magnified scale it is clear that the total peculiar momentum diverges expo- E . 2 v
nentially fromt=0. (c) Total x component of the linear momentum as a i Pai =~ €aa i Pai (7
function of time.

or

ates around zero? Furthermore, why do we observe no such D dp, =
violation of momentum conservation in standard NEMD - o
simulations of planar Couette flow? -

We consider first the case of planar elongation. For arPefining P,=2ipyi, then i dp,;=d(Zip,i)=dP,, and
adiabatic systerfsuch as that displayed in the results for Fig. Eq. (8) may be written as

- éaaz Pai dt. (8)

5 above the SLLOD equations of motidf are dpP,
P~ €qa dt, 9)
. _bi @
I =—+ I’i-Vu
m

which has the simple analytic solution
p=Fi—pi-Vu. O PU=P 0o~ ),
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ie., _
Z pyi=0. (13b)
()= (0 —€,,1). 10
zi Pa(t) Z Pi(0)€XP(~ €qal) (10 Equation(13b) is simply a statement of the conservation of

) linear momentum in thg direction. Thus, Eq(13a becomes
Noting now that

€x= 1€, 2 pxi=0, (14
i

where >0, which itself implies that momentum is conserved in the
direction as well. Thus, any numerical simulation will in-

we obtain the final analytic expressions for the total linearglve the total linear momentum in both tteandy direc-

momenta in both the compression and expansion directiongions randomly fluctuating about zero. For planar Couette

ny: — €,

respectively, flow the geometry fortuitously demands that the linear mo-
mentum is not driven to diverge as it is for planar elongation,
z pyi(t)= z pyi(0)explet), or any flow geometry that involves contraction. This is why

i i

all simulations of planar Couette flow are numerically stable,

(17) even for long simulation times, not considering the usual

> i) =2 pyi(0)exp — et). technical problems associated with numerical drift, which
i i are easily correctetf:*®

The implications of Eq(11) are quite surprising in them- Having established the numerical round-off roots of the

selves, in that they state that for a NEMD simulation of PEF’probIem, We now propose t\.NO .S|mple and e"?‘s."y imple-
the total linear momentum for a fluid in the contractifyy mentgd solutions, bo.th of V\{h'Ch !nvolve only minimal per-
direction will alwaystend to diverge exponentially, whereas turbat|on§ to the parhple trajectorles.' L
the total linear momentum of a fluid in the expandifg The first soluthn is the mgst obvious and easily imple-
direction will always tend to converge exponentially toward mented. At each time step 3|mplz subtract out the tgtal
zero. If numerical precision was infinite, then &&0, momentum frqm each particle. fi,=(1/N)Zipy;, th_en Pyi
2ipyi(0)=0 (identically), and henceZ;p,,;(t)=0, Vt, and —Pyi~ Py, Vﬁmcg_gua_rant_eesl that the sum of t?]e linear mo-
the simulation would conserve momentum and remain stablg]entl;]m In t & wec?og IS aV\/lal){s zero at eac tmest(Tp.
for all times. As this can never be the case, no matter what | This rezerolllng 0 tbe _tota meztr mom_e:qtum nvolves
the specifics are of the particular numerical integrator choPy Very smai perturbations to the particie traj_e_ct_ones.
sen, exponential divergence Bfp.(t) is inevitable. Con- Nonetheless, it is aad hocmethod and could be criticized

' A because the equations of motion are now no longer fully

servation of momentum is assured in the expanding direca terministi q1i ible. H th ; bi
tion, but canneverbe obtained in the contracting direction eterministic and time reversible. However, these two objec-

under the application of the standard numerical methods. tions can be rea(_alily overcome by designing F”T‘e. reversible

This result is confirmed by the numerical data in Fig. 5. equations of motion employlng a fully deterministic mecha-
This type of numerical instability isot what is usually as- glsm 0 constrr?_ln :)he tota:l _Ilneacg morflegt_um_ tlo zefroL we
sociated with kinetic energy conserving integratdrgnd emonstrate this by applying Gauss® Principle of Least

should be thought of as unique to flows involving contractionconsna'n{ to the momentum equation. Itis straightforward

of at least one dimension in space. The total linear momen© Show that the newhermostattecéquations of motion are

tum in this contracting dimension will always be driven to given as
diverge exponentially.

Consider now the case of an adiabatic fluid undergoing fi:&Hi,Vu'
planar Couette flow. In this case the appropriate SLLOD m
equations of motion for the components of peculiar momen-

tum are Pi=Fi—pi-Vu—ap;—\j, (15
o . wherej is the unit vector in the direction, and\ is a mul-
Pxi=Fxi— ¥Pyis tiplier determined as

o A=(1N)2 [Fi=pi-Vu-api]j. (16)

wherey is the shear strain rate given &s=du,/dy.
Using Newton'’s third law for the sum of the forces, we Note that the perturbation applies only to theomponent of
have the momentum. The component is guaranteed by the dy-
namics to be conserved, as discussed previously.
_ _ As the equations of motion are now thermostatted, we
Z Pxi=— 7’2 Pyi (133 need to evaluate the thermostat multiplier Our preference
is to use a Gaussian thermostatyith the appropriate value
and given as
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1010 T ] 9.010° occurs, are numerically unstable. We have shown that this
I 1 instability is induced by numerical round-off errors that
] cause the total linear momentum in the contracting direction
85107 to accumulate exponentially in time. This exponential in-
crease reaches a critical value in time, after which the fluid
undergoes a catastrophic restructuring that drastically re-
duces the total internal energy. This lack of momentum con-
servation is independent of the type of numerical integrator
chosen to integrate the equations of motion, and is an un-
- avoidable consequence of the finite precision in the floating
I k. point representation of variables inherent in any computer.
10 10™ e T T U R We devised two numerical schemes which ensure that
0 500 1000 1500 2000 2500 3000 3500 4000 momentum is conserved. The first involved hocrezeroing
(@) time of the total momentum in the contracting direction, while the
1080 F . T AR ‘ 7 second utilizes a nonholonomic Gaussian constraint.dche
T [ o EN(ezero ] hoc method is simpler to use and also displays superior sta-
1.260 :_ X E/N (constraint) —i tistiCS_
] We have also shown that NEMD simulations of planar
Couette flow do not suffer from this exponential divergence
] of the total linear momentum. The geometry of the flow for-
© ] tuitously allows the total momentum to fluctuate around
1.200 [ ] Zero.
' 1 Finally, we point out that the numerical instability de-

5010

-4 8010

yi

Zp.. (re-zero)
Gurensuoo) “d'z

Eipyi (re-zero)

-5.010™ 7 7.5 107

1240 ]

E 1.220 g

ey ] scribed in this paper was confined to flows in which the
1160 | . elongation rate was relatively wedk-<0.05. For higher
i Ll Cel ] values of the field we found that the simulations remained
0 500 1000 1500 2000 2500 3000 3500 4000 stable for long times. Our analysis of the conservation of
(b) time momentum was based on an unthermostatted fluid, as it was

FIG. 6. (a) The totaly-component of the linear momentum as a function of pOSSIble to find analytical solut|on§ to the_conservatlon eq_ua_
time for a thermostatted systeri€ 0.722; N/V=0.8442;¢=0.05) with(i)  tions, and to compare these solutions with actual numerical
Sipyi(t) set to zero at each time step byl hocrezeroing, andii) with results. Naturally, such a fluid had to be under the influence
Z;pyi(t) set to zero by the application of a dynamical Gaussian constraint tof g very weak field to avoid excessive heating of the fluid
the equations of motion(b) The total_lnter_nal energy per particle as a (and hence further numerical instability of the systei
function of time for the systems described(&. The energy for both sys- . . .
tems attains a single nonequilibrium steady state, as required, and the fluff@S thus not possible to perform unthermostatted simulations
no longer experiences a nonequilibrium phase transition. for elongation rates above 0.05 for comparison purposes. For
thermostatted flows under the influence of weak fields, the
thermostat multiplier is a relatively small term in the mo-
) mentum equation. Thus, the exponential behavior of the total
Y Zilpi-Fi—pi-(pi-Vu) = Ap;-j] 17 linear momentum tends to be preserved. However, for larger
>p? | field strengths the term involving becomes more dominant,
and the corresponding conservation equation is highly non-
linear. This equation cannot be solved analytically, and the
humerical results indicate that the exponential dependence of
{Rie total linear momentum is destroyed in this higher field
region.

In Fig. 6(@) we display the total linear momentum in the

y direction as a function of time for a thermostatted system
using both procedures described above. Both methods al
shown to conserve the momentuie., =;p,;= 0, within sta-
tistical errorg. Thead hocmethod does display superior sta-
tistics, and because of its simplicity is to be preferred. An
equally viable alternative would be to use direct proportional
feedback® Finally, in Fig. 8b) the total internal energy per ACKNOWLEDGMENT
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